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Abstract

UltraSPARC-II extends the family of Sun’s 64-bit SPARC
V9 microprocessors, building on the UltraSPARC-I pipe-
line and adding critical enhancements to boost data band-
width, hide memory latency, and improve floating-point
and multimedia performance. New external cache and
interface options allow more flexibility in system imple-
mentations. This paper describes the motivation and
implementation of UltraSPARC-II’s enhancements.

1.0 Introduction

UltraSPARC-II is Sun Microsystems’ second generation
high-performance, highly integrated superscalar proces-
sor implementing the SPARC V9 64-bit architecture [1].
Building on the UltraSPARC-I pipeline, UltraSPARC-II
scales up its computation, multimedia, and networking
performance. The design was retargeted for 0.35µ CMOS,
5-layer metal technology, and adds functional enhance-
ments to boost data bandwidth, reduce cache-miss penal-
ties, and improve floating-point and multimedia (visual

instruction set (VIS)) performance. Clock rates are scaled
to 250-300 MHz, to achieve an estimated 350-420
SPECint92 and 550-660 SPECfp92 (2Mbyte cache).

Functional enhancements in UltraSPARC-II include:

• Allowing up to 3 outstanding 64-byte block reads to
memory

• Up to 2 outstanding block writebacks

• Extensions for V9 Prefetch instruction

• Multiple external cache configuration and system
clocking options.

• Larger maximum External Cache size -- 16Mbytes vs.
4Mbytes.

TABLE 1. UltraSPARC-1 and -II Comparison

UltraSPARC-I UltraSPARC-II
Architecture SPARC V9 SPARC V9
Device count 5.2 million 5.4 million
Die size (mm) 17.7 x 17.8 12.5 x 12.5
Operating Frequency 167 MHz 250 MHz
Supply Voltage 3.3 Volts 2.5 Volts
Power dissipation 30 watts 26 watts
Technology 0.5µ CMOS,

4-layer metal
0.35µ CMOS,
5-layer metal



1.1 UltraSPARC-I Background1

UltraSPARC-I was Sun’s first 64-bit SPARC V9 proces-
sor. Like its 32-bit predecessor, SPARC V8, V9 is an
instruction set architecture created by SPARC Interna-
tional. SPARC V9 is strictly upwards binary compatible
with V8, while providing improved system performance
through features such as 64-bit integers and virtual
addresses, additional floating-point registers, and relaxed
memory ordering models.

Performance goals required UltraSPARC-I to be a 4-way
superscalar design. The four instructions dispatched in a
given clock can include most combinations of:

• two integer

• two floating-point/graphics

• 1 load/store

• 1 branch

Only floating-point/graphics instructions and certain
branches are candidates for the 4th instruction in a group.
Instructions are dispatched in-order, but may complete
out-of-order.

UltraSPARC-I and -II include the following features:

• Nine concurrent execution units

• 64-bit/128-bit datapaths

• In-cache dynamic branch prediction

• Precise exceptions and multiple, nested traps

• 16kB 2-way instruction cache with pre-decoded bits

• 16kB non-blocking, direct-mapped data cache

• Separate 64-entry, fully associative instruction and
data TLBs.

• Hardware-assist for software-managed TLB miss han-
dling

• 9-entry Load Buffer / 8-entry Store Buffer

• Integrated external cache controller supporting
512Kbytes - 4Mbytes (16Mbytes on -II) of synchro-
nous SRAM.

• 128-bit pipelined and split transaction system bus

• Snooping and directory-based cache coherency support

1.  This section is taken from UltraSPARC(TM): The Next Gen-
eration Superscalar 64-bit SPARC [2]

A block diagram is shown in Fig. 1.

UltraSPARC-I and -II use a 9-stage pipeline pictured in
Fig. 2. Three additional stages are added to the integer
pipe in order to make it symmetrical with the floating-
point pipe. This simplifies pipeline synchronization and
exception handling.

The fetch stage is used to read a set of 4 instructions and
branch prediction information from the instruction cache
(I$).In thedecode stage, these instructions are further
decoded and placed in the 12-entry instruction buffer. In
thegroup stage, the Integer Register File (RF) is accessed
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at the same time as the 4 oldest entries in the instruction
buffer (or the instructions read directly from the I$) are
considered for dispatch.

At this point, the Integer and Floating-point/Graphics
pipes differ. The next stage in the Integer pipe is theexe-
cution stage, where all integer instructions are executed
and virtual addresses are calculated. During thecache
stage, the data cache (D$) and the data TLB are accessed
using the virtual address. Branches are resolved in this
stage.

In then1 stage, D$ misses are detected and load data is
available for cache hits. Accesses that miss the D$ are
enqueued on the load buffer. In then2 stage, the Integer
pipe waits for the Floating-point pipe. In then3 stage, the
two pipes converge and all traps are resolved. In thewrite
stage, results are written to both Register Files and instruc-
tions are committed.

Like integer instructions, floating-point instructions are
dispatched in thegroup stage. In theregister stage, the
floating-point RF is accessed. Thex1, x2, andx3 stages
represent the Floating-point execute stages.

2.0 Microarchitecture enhancements for
UltraSPARC-II

While the UltraSPARC-II design is based strongly on
UltraSPARC-I, performance and system-design goals
necessitated critical enhancements. Floating point perfor-
mance is boosted by implementing software-controlled
prefetch and increasing the available memory-interface
bandwidth of the processor. The additions account for an
estimated 10% improvement in SPECfp92, with a negligi-
ble impact on die area.

System design realities required additional flexibility in
the external cache and system interface. Two types of
SRAM may be used for the external cache. This provides
system designers a wide array of price/performance
options, and the ability to create high-end systems targeted
to specific application environments.

3.0 Data prefetch

For many floating-point intensive applications, the main
performance bottleneck is providing enough data from the
caches and/or memory to keep the FP execution units
busy. For applications with small to medium data-sets (up
to a few Mbytes), the data can be provided from the on-
chip or external data caches at a sustained rate of 8-Bytes/
cycle [3]. For larger data-sets, external cache misses
become limiting. In UltraSPARC-I, each access to a new
64-byte block would lock up the load buffer for the dura-
tion of the memory access. This would in turn stall the
pipeline on the “use” instruction for that data.

UltraSPARC-II employs the SPARC V9 Prefetch instruc-
tion to alleviate this bottleneck.The instruction is handled
much like a load, except that data is prefetched into the
external L2 cache (E$) in 64-byte blocks, and not written
to on-chip D$ or a register. This allows the load buffer to
retire the prefetch once it has accessed the E$, regardless
of hit or miss. As a result, prefetch “misses” are non-
blocking; subsequent loads and stores which hit the caches
may complete while the prefetch is outstanding to mem-
ory. Concurrently, the External Cache Unit sends the miss
request on to the memory system.

Note that it might seem possible to get the same prefetch
effect by scheduling loads sufficiently ahead of the “use”,
i.e, to account for main memory latency in instruction
scheduling. However, the load buffer design requires loads
to complete in FIFO order, although loads may complete
out-of-order with respect to other types of instructions.
While any load miss is outstanding to the memory sub-
system, subsequent load hits are blocked, and the load
buffer “locks up”. Prefetch avoids this lock up since the
load buffer need not wait for the memory access before
retiring a prefetch.

The SPARC V9 Prefetch instruction defines several vari-
ants, to fetch data in preparation for reading or for writing.
UltraSPARC-II maps these into two types of prefetch:

1. Prefetch for coherent read access. If the desired block
is not valid in the E$, a read-to-share request
(P_RDS_REQ) is sent to the UPA bus.1

1.  UltraSPARC, and the UltraSPARC Port Architecture (UPA)
interconnect use a MOESI protocol for maintaining system-wide
cache coherence [4].



2. Prefetch for coherent write access. If the desired block
is not in Modified or Exclusive state in E$, a read-to-
own request (P_RDO_REQ) is sent to the UPA bus.

4.0 Multiple-outstanding read requests

UltraSPARC-I was limited to a maximum of one coherent
read and one dirty-victim writeback request outstanding to
the memory subsystem. UltraSPARC-II extends this to
three reads and two dirty-victim writebacks. When com-
bined with prefetch, this significantly boosts E$ miss han-
dling bandwidth, since memory accesses can effectively
be pipelined.

For a typical UltraSPARC-based desktop system, memory
latency is about 30 clock cycles from request to data (pin
to pin, @ 250MHz). Accounting for overhead in the pro-
cessor (i.e., delay in sending a fourth read request when
the first request completes), peak demand bandwidth
would be 1.33 GBytes/sec:

This would completely saturate the UPA system data bus,
which also has a peak bandwidth of 1.33 GBytes/sec @
83.3 MHz.

UltraSPARC-II also supports up to two outstanding dirty-
victim writebacks. This is sufficient to balance the three
outstanding reads, for codes exhibiting from 0% to 100%
dirty victimization on reads. In the extreme of 100% vic-
timization, a typical memory system design would be satu-
rated with two each of reads and writebacks outstanding.
In the “typical” case of 50% writebacks, providing buffer-
ing for the second writeback eliminates occasional stalls
due to non-uniform writeback patterns.

Consider execution of a DAXPY1 loop in a typical system
with and without the UltraSPARC-II extensions. This loop

1.  DAXPY: Double-precision AX +Y vector operation. The
inner loop of Linpack.
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performs two loads, one store, and two floating point oper-
ations for each eight bytes of results:

Y[i] = A*X[i] +Y[i]

With two floating-point issue slots but only one memory-
op issue slot per instruction group, it’s clear that memory
accesses dominate execution time. For this example, we
presume that data is not initially E$-resident. Assuming
unit-stride vectors, this generates two E$ misses and (on
average) one E$ writeback per 64-bytes of results.

Without UltraSPARC-II’s extensions, loop time is deter-
mined by the delay of serial E$ misses, plus processing
time by the CPU in between the E$ misses. For a typical
deskside (server) computer2, this would be ~144 cycles.
The breakdown is:

Tloop = (Tmem_access + TE$_Fill + Tload_store)
≈ 102 + 18 + 24 = 144 cycles

where

Tmem_access = Nominal read-miss latency for two back-to-back
E$ misses, where memory latency (for a server-
type system) is about 45 CPU cycles.

TE$_Fill = E$-busy time while miss data is written into E$,
before loads & stores can consume the data. (One
of the E$ fills can be hidden during the next
miss’s memory access.)

Tload_store = load & store processing time in between E$
misses. This is an idealized approximation for 16
loads and 8 stores.

With the extensions, loop speed is limited by E$ busy
time, not memory latency. There are two E$ fills, plus one
writeback -- and the writeback uses E$ cycles which can’t
be hidden during E$ misses. (In the prior example, write-
backs were performed while the processor was stalled on a
load-miss). Two E$ pipeline slots are now used for
prefetch cache-lookup as well, assuming the loop is
unrolled eight times to cover 64 bytes/vector/iteration:

Tloop = (TE$_fill + TE$_writeback + Tload_store + Tprefetch)

≈ 30 + 10 + 24 + 2 = 66 cycles

2.  E.g., a multiprocessor system employing UltraSPARC-II @
250 MHz, using the UPA bus interface running at 83.3 MHz.



The ideal case predicts a 118% speedup (1 - 144/66) for
this loop; In simulations, we see actual loop times of 165
and 84 cycles for the two cases, a 96% speedup. The band-
width demanded of the memory system is 571 Mbytes/sec
for the 84-cycle loop.

4.1 Compiler support for prefetch

A key problem that the compiler has to deal with is the
basic question of when to use and when not to use
prefetch. Indiscriminate use of prefetch will slow down
some loops and accelerate others yielding a less than opti-
mal result. Prefetch should be used for loops that miss in
the L2 cache and shouldnot be used for loops that hit in
L2 (or L1). At compile time a guess has to be made as to
whether a given loop is a candidate for prefetching or not.
Static program analysis, information obtained through
profile feedback, command line options and directives
embedded in the source are some methods used to assist
the compiler in making this decision.

Another problem is that prefetch instructions consume the
memory issue slot in a group. Since UltraSPARC-II has
two integer units and two floating point functional units
(an adder and a multiplier) but only one memory issue
slot, many loops are limited by the number of memory
operations that have to be executed. Therefore, to utilize
this valuable resource most efficiently, a minimum number
of prefetches should be issued. This can be done by unroll-
ing the loop a sufficient number of times such that one
prefetch per unrolled loop fetches the data needed by mul-
tiple loads in the same unrolled body. For example, if a
double precision vector is being accessed with unit stride
in the given loop, the loop is unrolled 8 times because one
prefetch can bring in 64 bytes or 8 double precision val-
ues.

The compiler has to deal with several problems with this
form of unrolling. High degrees of unroll result in a higher
number of remainder iterations when the loop is exited,
which usually execute with less efficiency. When multiple
vectors with different element sizes or strides are being
accessed, a common degree of unroll has to be determined
for all of them. In some cases, the stride may be unknown
at compile time or it may be variable. These cases may
force the compiler into making conservative assumptions
and result in more prefetches than are needed. For these
reasons, the impact of executing more than one prefetch

per block is minimized. A prefetch which hits the E$, or
which matches an outstanding prefetch, is immediately
retired by the hardware. The main cost is the loss of one
E$ pipe cycle for each extraneous prefetch.

The compiler must also schedule prefetches sufficiently
ahead of the first referencing load instruction to account
for memory latency, to assure that all loads hit the L2-
cache. This is a function not only of memory latency and
loop execution time but also of the address alignment of
the streams being prefetched. Since the address alignment
is usually unknown, additional spacing between prefetches
and referencing loads is often required. For large prefetch-
ahead distance (e.g, fast, single-vector loop in a high-
latency memory system) UltraSPARC-II can enqueue two
64-byte reads internally, in addition to the three outstand-
ing to the memory system, before stalling the load-buffer.

The E$ is burst-filled for prefetch misses. There is no
requirement to minimize latency of the first sub-block to
the CPU, so data is buffered in the UltraSPARC Data
Buffer until it can be written into the E$ in the minimum
possible number of cycles. This reduces usage of E$
cycles for installing prefetched data in the E$, as com-
pared to load or store misses. It does not increase the
prefetch-ahead distance requirement, nor impact loop
start-up.

5.0 External cache modes

Two types of synchronous static RAM are supported for
use in the external cache:

• Pipelined SRAM clocked at the CPU frequency pro-
vides the lowest latency and highest bandwidth.

• Flow-through access SRAM, clocked at one-half the
CPU rate, allows different cost options (with only a
modest performance loss) as well as larger cache sizes.

5.1 1-1-1 mode

For best performance, the E$ interface is directly scaled up
from UltraSPARC-I, up to 250MHz. This utilizes 250MHz
pipelined synchronous SRAMs, with the same architec-
ture, package and pinout as those used for UltraSPARC-I
[5]. This is referred to as “1-1-1” mode, since one CPU



cycle each is required for address, array-access, and data
return. Read latency (pin-to-pin) is three cycles, with read
or write bandwidth of 16 bytes per CPU cycle. One “dead”
cycle is required on the data bus when switching between
reading and writing, for electrical reasons.

These SRAMs use a late-write architecture, in which write
data trails the address by one cycle. Since the data bus is
bidirectional, this alleviates one stall cycle (due to data bus
contention) in a write following a read. This is apparent in
Fig. 3; note that data Dn+2 trails address n+2 by a cycle.

5.2 2-2 mode

For flexibility of system design, UltraSPARC-II also sup-
ports flow-through access (more specifically, register-latch
type) synchronous SRAMs. For a 250MHz CPU, these
SRAMs have ~7ns access time from the address register,
operating at 125MHz. The read access is essentially flow-
through from the address register, though output data is
controlled by a latch to improve output hold time. This is
referred to as “2-2” mode, since SRAM reads take two
CPU cycles to transmit the address to SRAM, and two
cycles to access and return data to the processor. Write
data follows the address by one (SRAM) cycle, which
eliminates bus contention when switching from reads to
writes.

This E$ option provides three essential advantages:

1. Technology and cost: these SRAMs are approximately
one generation “older” in SRAM design than the ultra-
fast 250MHz parts. They use an industry-standard
design which differs from the pipelined SRAMs only
in the output register. This assures a stable supply of
parts from multiple vendors.

2. Headroom for scaling speed: As the UltraSPARC-II
clock rate is further scaled up over time, the SRAMs
must keep up. In addition, external switching rates
must scale. In both aspects, commercially available
SRAMs are not expected to match processor clock rate
improvements. Register-latch SRAMs provide a solu-
tion for CPU clock rates up to 300MHz and beyond.

3. Density: Larger E$ sizes are possible with these rela-
tively slower SRAMs. In general, 2-2 mode caches can
be four times the size of 1-1-1 caches. Cache-size sen-
sitive applications, as well as systems with large mem-
ory latency, can realize better performance from 2-2
mode despite its latency and bandwidth penalties.

As seen in Fig. 3, E$ read latency is increased by one
cycle relative to 1-1-1 SRAM mode. Peak bandwidth is
reduced from 16 bytes/cycle to eight. However, no dead
cycles are required to switch between reading and writing
the SRAMs; this increases the usable bandwidth. In the
1-1-1 mode, two stall cycles are needed between read and
write cycles to accommodate the databus turnaround time.
Overall performance degradation, relative to 1-1-1 SRAM
mode, is 4.5% SPECint92 and 8.1% SPECfp92 (esti-
mated).

6.0 System interface and clock domains

UltraSPARC-II is module-level pin compatible with
UltraSPARC-I, and can replace or cohabit with -I modules
in multiprocessor systems. The UPA interface is synchro-
nous, requiring the CPU clock frequency to be an integer
multiple of the system clock. For UltraSPARC-II, sys-
tem:CPU clock ratios of 2:1, 3:1 and 4:1 are supported, to
cover a wide spectrum of processor and system speeds.
Examples are shown in table 2.

Unlike UltraSPARC-I, the -II doubles the clock frequency
internally, allowing a lower speed clock to be delivered to
the pin; e.g., 125MHz clock for a 250MHz CPU.

7.0 Summary

UltraSPARC-II’s mission is to extend the UltraSPARC
family’s industry-leading capabilities and to increase flexi-
bility for a wide range of system implementations. This is
accomplished by building on the solid foundation of
UltraSPARC-I, and exploiting technology improvements
for a 50% gain in clock speed. Incremental capabilities
were added in the cache and memory interfaces which,

TABLE 2. System and Processor Clock Ratios

CPU
freq

(MHz)

system
freq

(MHz)

clock
ratio

implementation

167 83 2:1 emulating UltraSPARC-I

250 83 3:1 standard configuration

300 75 4:1 highest performance processor; module
can be added to existing 83MHz system

300 100 3:1 highest-performance system



while inexpensive in design time and die area, address the
need for greater floating-point and VIS performance.
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